Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 351: 119688, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064990

ABSTRACT

The field practices, including irrigation and fertilization, strongly affect greenhouse gas emissions and soil nutrient cycling from agriculture. Understanding the underlying mechanism of greenhouse gas emissions, soil nutrient cycling, and their impact factors (fungal diversity, network characteristics, soil pH, salt, and moisture) is essential for efficiently managing global greenhouse gas mitigation and agricultural production. By considering abundant and rare taxa, we determine the identities and relative importance of ecological processes that modulate the fungal communities and identify whether they are crucial contributors to soil nutrient cycling and greenhouse gas emissions. The research is based on a 4-year field fertigation experiment with low (300 kg/ha P2O5 with 150 kg/ha urea) and high (600 kg/ha P2O5 with 300 kg/ha urea) fertilization level and three irrigation levels, that is, low (200 mm), medium (300 mm), and high (400 mm). The α-diversity (richness and Shannon index) of fungal subcommunities was significantly higher under medium irrigation (300 mm) and low fertilization (300 kg/ha P2O5 with 150 kg/ha urea) than under other treatments. Intermediate irrigation with low fertilization treatment yielded the most significant higher multinutrient cycling index and the lowest CO2 and CH4 emissions. The null model indicated that abundant taxa are mainly regulated by stochastic processes (dispersal limitation), and rare taxa are mainly regulated by environmental selection, especially by soil salinity. The co-occurrence network of rare taxa explained the changes in the entire fungal network stability. The abundant taxa played vital roles in regulating soil nutrient status, owing to the stronger association between their network and multinutrient cycling index. Furthermore, we have confirmed that soil moisture and fungal network stability are crucial factors affecting greenhouse gas emissions. Together, these results provide a deep understanding of the mechanisms that reveal fungal community assembly and soil fungal-driven variations in nutrient status and network stability, link fungal network characteristics to ecosystem functions, and reveal the factors that influence greenhouse gas emissions.


Subject(s)
Greenhouse Gases , Mycobiome , Soil , Greenhouse Gases/analysis , Carbon Dioxide/analysis , Ecosystem , Nitrous Oxide/analysis , Agriculture/methods , Urea , Fertilization , Methane/analysis , Fertilizers/analysis
2.
Plants (Basel) ; 12(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447011

ABSTRACT

Agroforest systems have been widely recognized as an integrated approach to sustainable land use for addressing the climate change problem because of their greater potential to sequester atmospheric CO2 with multiple economic and ecological benefits. However, the nature and extent of the effects of an age-sequence of agroforestry systems on carbon (C) storage remain largely unknown. To reveal the influence of different aged poplar-crop systems on C stocks, we investigated the variation in biomass and C storage under four aged poplar-crop agroforest systems (3-, 9-, 13-, and 17-year-old) in the Henan province of China. The results showed that stand biomass increased with forest age, ranging from 26.9 to 121.6 t/ha in the corresponding four aged poplar-crop systems. The poplar tree biomass accounted for >80% of the total stand biomass in these poplar-crop agroforestry systems, except in the 3-year-old agroforestry system. The average stand productivity peaked in a 9-year-old poplar-crop system (11.8 t/ha/yr), the next was in 13- and 17-year-old agroforestry systems, and the minimum was found in 3-year-old poplar-crop stands (4.8 t/ha/yr). The total C stocks increased, with aging poplar-crop systems ranging from 99.7 to 189.2 t/ha in the studied agroforestry systems. The proportion of C stocks accounted for about 6, 25, and 69% of the total C stocks in the crop, poplar tree, and soil components in all studied agroforestry ecosystems, respectively. Our results suggested that the poplar-crop system, especially in productive and mature stages, is quite an effective agroforestry model to increase the study site's biomass production and C stocks. This study highlighted the importance of agroforestry systems in C storage. It recommended the poplar-crop agroforest ecosystems as a viable option for sustainable production and C mitigation in the central region of China.

3.
Plants (Basel) ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447063

ABSTRACT

Ecological stoichiometry plays important roles in understanding the nutrient constraints on tree growth and development, as well in maintaining ecosystem services in forests, yet the characteristics of carbon:nitrogen:phosphorous (C:N:P) stoichiometry in forests under karst environment have not been sufficiently evaluated. In this study, concentration, distribution, stocks of Nitrogen (N) and Phosphorous (P), and ecological stoichiometry were studied in three common forest types: Masson pine natural forests (MPNF), Masson pine plantation forests (MPPF), and Slash pine plantation forests (SPPF) in a karst region of southwestern China. Results showed that N concentrations were higher in overstory than in understory and litter in the studied forests. However, P concentration was relatively low in overstory component of the forested ecosystems. Meanwhile, the N and P concentrations were higher in SPPF in the stem and litter, while these contents were higher in MPPF and MPNP in the overstory and understory. The N and P stocks ranged from 5.7-6.2 t ha-1, and 0.5-0.6 t ha-1 in the examined forests. The ecological stoichiometry of C:N:P in the three forest types was similar in litter (46-49:2:1), and relatively steady in soil (250-320:13-16:1) and tree leaf (100-200:14-20:1). Soil P status was the primary limiting factor in affecting tree growth in MPPF and SPPF (N:P ratio > 16), while both N and P conditions were the main restrictive factors in MPNP (N:P ratio = 15) in the study area. Our study provides scientific references and useful datasets of C:N:P stoichiometry for sustainable management of forest ecosystems in karst regions.

4.
Front Plant Sci ; 13: 923410, 2022.
Article in English | MEDLINE | ID: mdl-35909763

ABSTRACT

Nitrogen (N) is often recognized as the primary limiting nutrient element for the growth and production of forests worldwide. Litterfall represents a significant pathway for returning nutrients from aboveground parts of trees to the soils and plays an essential role in N availability in different forest ecosystems. This study explores the N transformation processes under litterfall manipulation treatments in a Masson pine pure forest (MPPF), and Masson pine and Camphor tree mixed forest (MCMF) stands in subtropical southern China. The litterfall manipulation included litterfall addition (LA), litterfall removal (LR), and litterfall control (LC) treatments. The project aimed to examine how litterfall inputs affect the soil N process in different forest types in the study region. Results showed that soil ammonium N (NH4 +-N) and nitrate N (NO3 --N) content increased under LA treatment and decreased under LR treatment compared to LC treatment. LA treatment significantly increased soil total inorganic N (TIN) content by 41.86 and 22.19% in MPPF and MCMF, respectively. In contrast, LR treatment decreased the TIN content by 10 and 24% in MPPF and MCMF compared to LC treatment. Overall, the soil net ammonification, nitrification, and N mineralization rates were higher in MCMF than in MPPF; however, values in both forests were not significantly different. LA treatment significantly increased annual net ammonification, nitrification, and mineralization in both forest types (p < 0.05) compared to LC treatment. LR treatment significantly decreased the values (p < 0.05), except for ammonification, where LR treatment did not differ substantially compared to LC treatment. Our results suggested that changes in litterfall inputs would significantly alter soil N dynamics in studied forests of sub-tropical region. Moreover, mixed forest stands have higher nutrient returns due to mixed litter and higher decomposition compared to pure forest stands.

SELECTION OF CITATIONS
SEARCH DETAIL
...